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Abstract—In the last few decades, the development of minia-
ture biological sensors that can detect and measure different
phenomena at the nanoscale has led to transformative disease
diagnosis and treatment techniques. Among others, biofunctional
Raman nanoparticles have been utilized in vitro and in vivo
for multiplexed diagnosis and detection of different biological
agents. However, existing solutions require the use of bulky lasers
to excite the nanoparticles and similarly bulky and expensive
spectrometers to measure the scattered Raman signals, which
limit the practicality and applications of this nano-biosensing
technique. In addition, due to the high path loss of the intra-
body environment, the received signals are usually very weak,
which hampers the accuracy of the measurements. In this
paper, the concept of cooperative Raman spectrum reconstruction
for real-time in vivo nano-biosensing is presented for the first
time. The fundamental idea is to replace the single excitation
and measurement points (i.e., the laser and the spectrometer,
respectively) by a network of interconnected nano-devices that
can simultaneously excite and measure nano-biosensing particles.
More specifically, in the proposed system a large number of
nanosensors jointly and distributively collect the Raman response
of nano-biofunctional nanoparticles (NBPs) travelling through the
blood vessels. This paper presents a detailed description of the
sensing system and, more importantly, proves its feasibility, by
utilizing accurate models of optical signal propagation in intra-
body environment and low-complexity estimation algorithms. The
numerical results show that with a certain density of NBPs, the
reconstructed Raman spectrum can be recovered and utilized to
accurately extract the targeting intra-body information.

Index Terms—Cooperative Raman spectroscopy, distributed
sensing, signal estimation, wireless intra-body communications,
wireless nanosensor network.

I. Introduction

Driven by the development of nanotechnology, emerging
nanosensors have been envisioned to provide unprecedented
sensing accuracy for many important applications, such as
food safety detection [1], agriculture disease monitoring [2],
and health monitoring [3], among others. Since nanosensors
can interact directly with the most fundamental elements in
matter, e.g., atoms and molecules, they can provide ultra-
high sensitivity. One of the most promising applications of
nanosensors is in vivo biosensing [4], [5], where nanosensors
are injected into human body to collect real-time information.
Nanosensors can be utilized both to detect well-known dis-
eases at their very early stage as well as to provide new fun-

This work was supported by the U.S. National Science Foundation (NSF)
under Grant No. CBET-1445934.

The authors are with the Department of Electrical Engineering, University
at Buffalo, the State University of New York, Buffalo, NY 14260, United
States. E-mail: {hongzhig, jmjornet, qqgan, zhisun}@buffalo.edu.

damental insights and understanding of biological processes
that cannot be observed at the macroscopic level.

The use of nanoscale communication techniques can enable
data transmission among nanosensors [6], [7]. Whether molec-
ular, acoustic or electromagnetic, there are two fundamental
limitations of directly using active nanosensors in human body.
First, wireless nanosensors require continuous power supply to
support wireless data transmission and motion control. How-
ever, due to the limited size of the nanosensor, a large battery
cannot be equipped and, even worse, recharging the battery
is difficult. Second, the wireless nanosensor requires circuitry
and antenna to process and radiate wireless signals, which
further increases its size. In order to alleviate the side-effects
caused by nanosensors in human body, we need to reduce its
size by removing the battery and wireless components.

Metallic nanoparticles coated with Raman active reporter
molecules have been widely used as surface enhanced Raman
scattering labels for multiplexed diagnosis and bio-detection
of DNA and proteins [8]–[10]. This is a promising solution
since it does not require power and wireless components on
the nanoparticles. Their motion is driven by the dynamic fluids
in human circular system and the information is delivered
by electromagnetic scattering. The Raman active reporter
molecules interact with chemicals inside human body and the
incident single-frequency optical light is scattered into a wide
frequency band with unique power spectrum due to molecule
vibration. Based on this unique spectrum, we can identify the
molecules. Although this approach suffers from low detected
power due to the small scattering cross section, the scattering
efficiency can be improved by placing the Raman active
reporter molecules on the surface of metallic nanoparticles
[9], [11].

While this solution can dramatically reduce the size of the
nano-device that is injected into the human body, it still has
limitations, which prohibit it from being widely used. First,
a laser is needed to excite the engineered nanoparticle inside
the human body and a spectrometer is demanded to detect
scattered Raman signal. Both the laser and the spectrometer
are bulky and expensive and, thus, are not portable or afford-
able. In addition, the accuracy of this sensing setup is not
high enough since the scattered Raman signal is much weaker
than the emitted signal by the laser due to the small scattering
cross section of the nanoparticle and the dispersive and lossy
propagation medium.

To address the aforementioned challenges, we propose the
concept of cooperative Raman spectroscopy, which can be
integrated on wearable devices [12], [13], such as a smart
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Fig. 1. Cooperative Raman spectroscopy sensing system on a wearable smart
ring. External part (the lower figure) is the nanosensors, which are installed
on the smart ring; internal part (the upper figure) is the NBP flowing in blood
vessels.

nanophotonic ring. The system consists of external nanosen-
sors and internal nano-biofunctional particles (NBPs), as
shown in Fig. 1. The bulky expensive lasers and spectrometers
are replaced with distributed nanosensors on a smart ring,
which can both emit and detect optical signals, by leveraging
the state of the art in nano-lasers and nano-photodetectors [14],
[15]. The nanosensors are placed on a smart ring which can
reduce the distance to the intra-body particles to increase the
received signal strength. Moreover, by installing nanosensors
distributively, we can increase the diversity of detection and
optimally allocate resources to make the sensing system more
robust.

In this paper, we design a sensing system for cooperative
Raman spectroscopy. More specifically, first, we present the
system architecture and describe the processes of signal gener-
ation, scattering and detection. Based on the operational frame-
work, we provide theoretical models to describe each part of
the system, including signal propagation, noise, NBP density,
and nanosensor’s position. In addition, we provide detailed
description of the information carried by NBPs and the method
to extract the information. Different from conventional sensing
systems, signals are not only distorted by the propagation
channel, but also the molecular noise and shot noise. The
limited power on the smart ring poses another challenge. Based
on the system model, we derive the sensing capacity and define
optimal power allocation schemes to increase the sensing
accuracy in each sub-band of the Raman spectrum. Also, we
derive the expected detected power of each nanosensor using
the stochastic system model. Based on the theoretical model
and nanosensor observations, we provide both centralized
and distributed Raman spectrum estimation algorithm, from
which the molecule information is extracted. The numerical
simulation validates the accuracy of the proposed estimation
methods.

The remaining part of this paper is organized as follows.
The system architecture, operational framework, and system
model are introduced in Section II. After that, the sensing
capacity and optimal power allocation strategy are discussed in
Section III. This is followed by the signal estimation algorithm
presented in Section IV. The proposed system performance
is numerically evaluated in Section V. Finally, this paper is
concluded in Section VI.

II. System Architecture andModel

The system architecture of cooperative Raman spectroscopy
consists of two important units, as shown in Fig. 1. The first
key element is the external nanosensors on a smart ring, which
are employed to 1) radiate optical signals, 2) detect scattered
signals by NBPs, and 3) process the detected information to
reconstruct the Raman spectrum. The second key component
is the internal NBPs, which are injected into blood vessels
to sense bioinformation. The bioinformation on NBPs can be
extracted by using electromagnetic scattering. In the following,
we first introduce the system architecture.

A. System Architecture

A NBP flowing in the human body can interact with differ-
ent types of molecules. Once it is illuminated by a monochro-
matic (single frequency) optical signal, it absorbs the signal
and scatters it into a wide spectrum. The spectrum is unique for
different molecules due to their different chemical structures
[9]. The objective of the proposed sensing system is to excite
the NBP using a single-frequency optical signal and recon-
struct the wide-band spectrum to identify the molecule. With
this in mind, a large number of interconnected nanosensors are
installed on a smart ring and each nanosensor has many nano-
emitters and nano-detectors. In transmission, the nano-emitters
generate and radiate the same monochromatic optical signal.
In reception, due to the challenges in creating broadband
detectors able to capture the entire Raman spectrum, each
nano-detector is tuned to a different narrow sub-band and many
of them are placed together on a nanosensor to cover the whole
wide-band spectrum. In addition, there is a controller on the
nanophotonic ring, which can synchronize nano-emitters and
nano-detectors. The nanosensors are uniformly distributed on
the ring. In this way, no matter how the ring is worn, it does
not affect the sensing results.

Once the raw spectrum data are collected by each nanosen-
sor, there are primarily two approaches to reconstruct the
spectrum and detect the molecules. 1) As shown in Fig. 2(a),
the first one is a centralized architecture, where the raw
data are sent directly to a data fusion center to do further
processing and identification. This method can provide the
most accurate results since all the raw data are considered
in the estimation algorithm. Besides estimating the spectrum
directly, the data fusion center can first compress the raw
spectrum data and then send to the smart phone. In this way,
the smart phone takes charge of spectrum reconstruction and
molecule identification. However, there are two drawbacks
which can prevent us from applying this architecture. First,
the communication overhead is large since all the data need
to be sent, which can increase the system delay and thus real-
time detection may not be possible. The second drawback is
that the signal processing in data fusion center requires a large
amount of energy and computation resource which increases
the burden of the ring. 2) The second architecture relies on
a distributed sensing concept as shown in Fig. 2(b). Each of
the nanosensor performs estimation algorithm and send the
quantized single-bit results to the data fusion center. Based
on the local results, the data fusion center performs a global
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(a) Centralized sensing architecture. All the nanosensors first send
detected photon numbers to a data fusion center on the ring. Then, the
data fusion center can either process or send the raw data to a smart
phone.
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(b) Distributed sensing architecture. Each nano-detector first processes
the detected information and quantizes the estimated results locally. Then,
the nanosensors send quantized results to a data fusion center on the
smart ring to do a global estimation. Finally, the detection results are
reported to a smart phone.

Fig. 2. Sensing system architecture. N p
i, j is the detected photon number by

the ith nanosensor’s jth sub-band nano-detector. bi, j is the quantized estimated
results by the ith nanosensor’s jth sub-band nano-detector.

estimation and identification and then send the results to the
smart phone. In this way, most of the data are processed locally
and thus the communication overhead can be dramatically
reduced. Nevertheless, this system requires more computation
resources for the nanosensor and the estimation accuracy may
not be as high as the centralized system.

The operational framework of the cooperative Raman spec-
troscopy consists of three phases.
• First, the synchronized nano-emitters on the smart ring

radiate optical signals at the same frequency into the
finger. The wavelength of the signal is usually between
450 nm to 1100 nm.

• Second, the flowing particles in blood vessels absorb the
radiated optical signal from emitters. Then, the particles
scatter the power into a wide spectrum.

• Lastly, the scattered signals propagate towards nano-
detectors and then the nano-detectors operating at dif-
ferent frequencies receive the corresponding photons.
After that, one can use different data fusion and sensing
architectures as shown in Fig. 2(a), and Fig. 2(b) to
process the sensed data, upon which the Raman spectrum
can be reconstructed and the machine learning algorithms
can be applied to identify the category of the molecules.

Based on the sensing system architecture and operational
framework, we provide the mathematical model for each
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Fig. 3. Illustration of light beam and detector’s effective area. The left-hand
side is vertical cross section of a finger. The outer circle is the cross section
of finger and the inner one is the cross section of bone. The right-hand side
is horizontal illustration of the finger and blood vessels.

component in the following.

B. System Model

Consider that there are Ns nanosensors uniformly installed
on a ring and each nanosensor has N f pairs of nano-emitters
and nano-detectors. The positions of a pair of nano-emitter and
nano-detector are considered to be the same since they are very
close to each other. The whole Raman spectrum is divided into
N f sub-bands and each nano-detector on the nanosensor can
detect signals in one sub-band. Note that due to the noise and
low-density of NBPs, some detectors may not receive enough
power and thus multiple nanosensors are employed to make
the system reliable. Since the bone is relatively far from the
skin and it is hard to penetrate, it can block the propagation
of optical signal. We assume both the finger and the bone are
cylinders with radius r f and rb, respectively. The blood vessels,
including artery, vein, and capillary, are randomly distributed
between the skin and bone with density λb. In each blood
vessel, the NBPs arrive with a density proportional to the area
of the blood vessel’s cross section, which is denoted by λpb =

λ0S b, where λ0 is the NBP density of a unit area and S b

is the area of a blood vessel’s cross section. In reality, λ0
is a function of time. When the NBPs are injected into the
circulatory system, λ0 gradually increases. After a while, some
of the NBPs are disposed by natural physiological actions and
the density gradually decreases. Due to the high directivity
of the nano-emitter and nano-detector, we consider they can
only radiate/detect signal with a large gain within a narrow
beam. The system parameters are also depicted in Fig. 3 and
the symbol notations are provided in Table I. In this paper,
we consider the sensing is quasi-static since the optical light
propagates much faster than NBPs’ movement. Thus, in the
following the NBPs are assumed to be static and the optical
channel remains constant during the sensing period.

1) Signal Propagation Model: The optical signals need
to penetrate skin, fat, and blood vessels to reach the NBPs.
Extensive analytical and empirical models have been derived
to capture this process [16]–[19]. There are many categories
of cells and tissues and their properties can be drastically
different. In [20], an analytical channel model for intra-body
in vivo biosensing is developed by considering the properties
of individual cells. In this paper, we use the same model to
describe the propagation loss of EM wave radiated by the
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TABLE I
Symbol Notations

Symbols Explanation Symbols Explanation

λ0 NBP density in a unit area S b Area of a blood vessel’s cross section

λb Blood vessel density S u Maximum area of a blood vessel’s cross section

λpb NBP density in a blood vessel S l Minimum area of a blood vessel’s cross section

r f Radius of finger Ns Nanosensor number

rb Radius of bone N f Sub-band number

d Distance to emitter/detector Nb Blood vessel number

η ft , f j Scattering coefficient,input ft , scattering fi α Emission/detection beam angle

hc Height of the beam l Length of a blood vessel covered by the beam

κ Molecule noise υ Dark current noise

σ2
c Channel fading variance σ2

m Molecule noise variance
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(a) Continuous Raman spectrum.
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(b) Discrete Raman spectrum.

Fig. 4. Raman shift.

emitters, which can be simply written as

h( f , d) = e
−2

(kwrc )2
∑Nstop

n=1 (2n+1)<(F n
M+F n

N)d
, (1)

where kw is the propagation constant, rc is cell radius, Nstop is
the numerical calculation order, F n

M and F n
N are wave vector

coefficients in [20], and < denotes the real part of a complex
number, d is the propagation distance and f is the operating
frequency. By using the method in [16], we further reduced
the complexity of the model. Besides this large scale fading,
due to the multipath effect caused by scattering, a Rayleigh
fading coefficient is also considered whose scale parameter is
σc.

2) Particle Scattering Coefficient and Quantization Model:
The NBPs first absorb power from incident light and then
scatter the power with unique information. Therefore, the
NBPs can be regarded as an information source which sends
encoded data x to detectors. This process consists of two steps.
First, the NBPs absorb the incident signal power at frequency
ft. Then, the NBPs reallocate the absorbed power based on the
scattering coefficients η ft , f j , where f j is the center frequency
of a sub-band. Consequently, the scattered power forms a

wide-band power spectrum that contains the information of
the scattering coefficients.

As shown in Fig. 4(a), the scattered signal by the NBP
spreads on a wide spectrum with varied signal intensity. The
intensity in the figure can be regarded as received power
which is proportional to the particle scattering coefficient
when the transmission power is given as a constant. This
scattering coefficient is considered as the transmitted signal x.
As shown in the figure, the spectrum is a continuous signal;
however, the estimation is discrete, i.e., we can only estimate
a single coefficient within a sub-band to approximate the con-
tinuously changed power spectrum, as depicted in Fig. 4(b).
As a result, we have to sample and quantize the continuous
spectrum and then based on the scattering coefficient vector
η = [η ft , f1 , η ft , f2 , · · · , η ft , fN f

], we can reconstruct the Raman
spectrum.

As mentioned in the system architecture, we can use both
centralized and distributed system to estimate the coefficient.
In the centralized algorithm, the number of bits that the
nanosensor uses to describe the received signal can signif-
icantly affect the system communication overhead. In the
distributed system, each nanosensor has their own estimation
and the number of bits it utilizes is also crucial. To reduce the
computation burden of nanosensors and the system commu-
nication overhead, we use simple binary quantization. When
the scattering coefficient (Raman intensity) is higher than a
threshold, η ft , f j is considered as 1. When the estimated coeffi-
cient is smaller than the threshold, the quantization process
considers the scattering coefficient (Raman intensity) as 0.
To estimate the value, we set several this kind of thresholds
and divide the sensors into subgroups. Each subgroup has its
own thresholds. Finally, based on the quantization results of
all the nanosensors, we can estimate η. The details will be
discussed in the spectrum estimation in Section IV. In addition,
since different molecules have different spectrum, the event of
transmitting 1 or 0 is a random process. In the following,
we consider the probability of transmitting 1 is p and the
probability of transmitting 0 is 1 − p.

3) Noise Model: The noise in a sensing system can corrupt
the detected signals and significantly affect the sensing capa-
bility. In the cooperative Raman spectroscopy system, there
are primarily two noises, namely, molecules noise and shot
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noise.
The NBPs flow through the circulatory system and interact

with plenty of molecules. On one hand, they meet with
the valuable molecules carrying health information. Through
optical scattering, we can detect those molecules by identifying
the power spectrum. On the other hand, the NBPs also
encounter many unexpected molecules in intra-body environ-
ment. Although the particles are not designed to interact with
these molecules, some chemical reactions can happen and
change the particles’ properties randomly, which are reflected
in the received power spectrum. The original power spectrum
is corrupted by unexpected noise power. Therefore, this noise
needs to be taken into account when reconstruct the power
spectrum.

Since the molecules in human body have a large variety of
categories which demonstrate different resonant frequencies
in Raman spectrum, we can consider the noise power is the
same for all the frequency bands. Therefore, the noise can be
considered as white with uniform power across a wide band.
Due to the large amount of molecules, the noise value can
be positive or negative, i.e., enhance or reduce the original
resonance due to chemical reactions, and its distribution is
Gaussian with mean value 0 and standard deviation σm.
Consequently, the noise caused by molecules can be regarded
as additive white Gaussian noise κm ∼ N(0, σm

2). With this
molecules noise, the scattering coefficient of the biofunctional
particle can be written as η ft , f j + κm = η ft , f j (1 + κ). Note that if
1 + κ < 0 we consider the total scattering coefficient as 0.

Shot noise is dominant in the detector which obeys Poisson
distribution. Let x(t) = η ft , f j (1+κ(t)) be the scattered coefficient
of a NBP plus molecule noise, Pt be the emitter transmission
power, and h( f , d, t) be the response of the channel from nano-
emitter to particle and then from particle to nano-detector. The
received signal at a nano-detector by using direct detection can
be written as

y(t) = h( f , d, t)x(t)Pt + υ(t), (2)

where υ(t) is the dark current. Then, the light strength can
be converted into doubly-stochastic Poisson process, which
represents the number of photons arriving at the detector in
a time interval ∆t. The probability that there are Np photons
arrive within ∆t is [21]

Pr{ŷ(t + ∆t) − ŷ(t) = Np} =
e−γp · γ

Np
p

Np!
, (3)

where ŷ(t) is the converted y(t) from light strength to photon
intensity and

γp =

∫ t+∆t

t

[
y(t)

]
dt ≈ ∆ty(t), (4)

where the approximation can be applied when ∆t is small
enough. Note that here υ is a nonnegative constant [22] and y
can be taken to have units photons per second at the operating
wavelength [23].

4) Particle Arriving Model: The NBPs are injected into
circulatory system with a certain density. They arrive at the
targeting sensing area with a diluted density. To model this
process, we consider the arrival rate of NBPs in a unit cross
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even more). Different colors in the figure denote different sub-bands. Only 8
sub-bands are depicted in the figure as an example.

section of blood vessel is λ0. Since different blood vessels have
different cross section areas, their NBPs arrival rates are also
different. Moreover, the process of NBP moving is modelled as
Poisson process since the NBPs are independent and random in
the blood [24]. The number of the NBPs that can be excited by
the nano-emitter depends on the position of the blood vessel,
the distance to the nano-emitter, and the density of NBPs.
The radiated optical signal by a nano-emitter can cover a
three dimensional cone and each nano-detector can receive the
scattered optical signal in the same cone since the nano-emitter
and nano-detector have almost the same position. As shown
in Fig. 3, the blood vessels are homogeneously distributed
between skin and bone. Although NBPs can receive power
from multiple beams as long as the nano-emitters are close
enough to each other, we consider adjacent nano-emitters with
overlapped beams work in different time slots to eliminate the
correlation among them to reduce the complexity of analysis,
i.e., in each time slot the NBPs within a beam can only receive
power from one nano-emitter. Since the beam angle is small,
we safely assume that all the NBPs on the same horizontal
plane of the cone have the same distance to the emitter. For
instance, the NBPs within ∆h in Fig. 5 have the same distance
to the nano-emitter. To find the number of particles in a blood
vessel and the received power, we need to find the distributions
of the length of blood vessels within a cone and their distance
to the nano-emitter. Given the blood vessel’s effective length
l and its cross section area, the number of particles within it
is given as

Pr(np = Np|L = l, S b = sb) =
(λ0sbl/u)Np

Np!
e−λ0 sbl/u, (5)

where sb is the cross section area of the blood vessel and
u is the velocity of blood. We assume the cross section of
the blood vessel is uniformly distributed in [S l, S u] with a
probability density function f (sb) = 1/(S u − S l).

5) Nanosensor Position and Minimum Number: One of the
design objectives is that no matter how the smart ring is worn,
it does not affect its performance. With this mind, we place
the nanosensors in a homogeneous way as shown in Fig. 6.
When there are N f sub-bands and Ns nanosensors, we first
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place the nanosensors in sub-band 1 at [0, 2π
Ns
, · · · , 2(Ns−1)π

Ns
].

Then, the nanosensors in sub-band 2 are placed at [ 2π
NsN f

, 2π
Ns

+
2π

NsN f
, · · · , 2(Ns−1)π

Ns
+ 2π

NsN f
]. Similarly, the nanosensors in the

nth sub-band are placed at [ 2(n−1)π
NsN f

, 2π
Ns

+
2(n−1)π

NsN f
, · · · , 2(Ns−1)π

Ns
+

2(n−1)π
NsN f

]. Three examples are provided in Fig. 6 when N f = 8
and Ns = 1, 2, and 3, respectively.

As discussed in preceding sections, within each nano-
emitter/detector’s beam, it is possible that there is no blood
vessel. As a result, the nano-detector cannot receive any signal.
If this happens for all the nano-detectors in a sub-band, the
power spectrum of that sub-band is missing. Herein, in our
design we need to guarantee that this can only happen with ar-
bitrarily low probability. The blood vessels are homogeneously
distributed and thus the probability that there are Nb blood
vessels within the effective area of f j sub-band is

Pr(nb = Nb) =
(0.5λbNsh2

c tan α
2 )Nb

Nb!
e−0.5λbNsh2

c tan α
2 . (6)

Thus, when Nb = 0,

Pr(nb = 0) = e−0.5λbNsh2
c tan α

2 . (7)

Since the blood vessel density is a constant number, which
we cannot freely adjust, and the nano-emitter/detector’s
beamwidth is preconfigured, only the number of nanosensor
can be varied. An arbitrarily small threshold τb is set to
guarantee that Pr(nb = 0) ≤ τb and the minimum sensor
number is

N s
b ≥

−2 ln τb

λbh2
c tan α

2
. (8)

Note that this minimum number can only promise that there
are blood vessels going through a nano-emitter’s/detector’s
beam. It does not guarantee that the detector can receive
scattered signal, because this also depends on NBP’s density.

III. Nanosensor Optimal Power Allocation

Similar as other wearable devices, the power consumption is
also a critical issue for the smart ring utilized for cooperative
Raman spectroscopy [25]. In this section, we first derive a
capacity for optical signal transmission in intra-body environ-
ment to measure the information delivered by a sub-band, upon
which we develop the optimal power allocation scheme. In
this paper, both the power and photon intensity are utilized.
As described in (2), the received signal can be expressed by
the input signal and the dark current, which are both denoted
in photon intensity. The photon intensity can be converted into
power by multiplying the energy per photon Ep = hPCcLT /λw,
where hPC is Planck’s constant, cLT is the speed of light, and
λw is the wavelength.

A. Capacity Analysis

The capacity analysis is mainly based on (2). Since the
detection takes very short time, we assume the particle move-
ment and channel status within such a period is constant and
thus the time t is neglected. When the nano-detector receives
one photon, it considers the scattering coefficient as 1, which

can be related to the results after quantization. Otherwise,
the nano-detector considers the scattering coefficient as 0.
Following the method in [26], when the nano-detector receives
more than 1 photon, the signal is regarded as 0 by considering
it as an error. Since we consider a very shot period, the
probability of receiving more than one photon is extremely
low. If 0 is transmitted, we can only receive 0, which delivers
no information. Consequently, we consider the scenario when
1 is received the transition probability of a sub-band channel
is

Pr(1|0) = (hi, j,k · κ
m
i, j,k · P

t
i, j + υ) · δt · e

−(hi, j,k ·κ
m
i, j,k ·P

t
i, j+υ)·δt ; (9)

Pr(1|1) =
[
hi, j,k · (η ft , f j + κm

i, j,k) · Pt
i, j + υ

]
· δt · e

−
[
hi, j,k ·(η ft , f j +κ

m
i, j,k)·Pt

i, j+υ
]
·δt , (10)

where i is from 1 to Ns (nanosensor number), j is from 1 to
N f (sub-band number), k is from 1 to N i, j

p (NBP number in a
nano-emitter’s/detector’s beam), and hi, j,k = h( f , dep)·h( f , dpd),
where dep and dpd are distance from nano-emitter to NBP and
distance from NBP to nano-detector, respectively. Then, the
mutual information can be written as

I(X,Y) = H{Y} − H{Y |X} = H {p · Pr(1|1) + (1 − p) · Pr(1|0)}
− p · H {Pr(1|1)} − (1 − p) · H {Pr(1|0)} . (11)

As pointed out in [26], δt is very small and two approxima-
tions can be made to simplify I(X,Y), i.e., H{x} = −x log x + x
and exδt ≈ 1. In addition, we define the following three
functions:

ξ1(x1, x2, x3) = −(x1 + x2 + x3) log(x1 + x2 + x3); (12)
ξ2(x1, x2, x3, x4) = x1(x2 + x3 + x4) log(x2 + x3 + x4); (13)
ξ3(x1, x2) = (1 − x1)x2 log(x2). (14)

As a result, the ergodic capacity of the information within δt

that we can obtain from the Raman signal is

C = max
x(t)≤η ft , f j

E{
I(X,Y)
δt
} ≈ E

{
ξ1(phi, j,kPt

i, jη ft , f j , hi, j,kPt
i, jκ

m
i, j,k, υ)

+ξ2(p, hi, j,kPt
i, jη ft , f j , hi, j,kPt

i, jκ
m
i, j,k, υ) + ξ3(p, hi, j,kκ

m
i, j,kPt

i, j + υ)
}
.

(15)

Up to this point, we implicitly assume N i, j
p = 1, i.e., there is

only one NBP within the nano-emitter/detector’s beam cone.
When there are multiple NBPs, the transition probability can
be updated as

Pr(1|0) = (
N i, j

p∑
k=1

hi, j,k · κ
m
i, j,k · P

t
i, j + υ) · δt · e

−(
∑Ni, j

p
k=1 hi, j,k ·κ

m
i, j,k ·P

t
i, j+υ)·δt ;

(16)

Pr(1|1) =


N i, j

p∑
k=1

hi, j,k · (η ft , f j + κm
i, j,k) · Pt

i, j + υ


· δt · e

−

[∑Ni, j
p

k=1 hi, j,k ·(η ft , f j +κ
m
i, j,k)·Pt

i, j+υ

]
·δt
. (17)

When there are Ns nanosensors and each nanosensor has
N f sub-bands, the system ergodic capacity can be written as
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Csys ≈

Ns∑
i=1

N f∑
j=1

E

ξ1(
N i, j

p∑
k=1

phi, j,kPt
i, jη ft , f j ,

N i, j
p∑

k=1

hi, j,kPt
i, jκ

m
i, j,k, υ)

+ξ2(p,
N i, j

p∑
k=1

hi, j,kPt
i, jη ft , f j ,

N i, j
p∑

k=1

hi, j,kPt
i, jκ

m
i, j,k, υ)

+ξ3(p,
N i, j

p∑
k=1

hi, j,kκ
m
i, j,kPt

i, j + υ)

 . (18)

Based on this equation, in the next section, we try to optimally
allocate Pt

i, j to achieve the best estimation results.

B. Optimal Power Allocation

Since the Raman spectrum occupies a wide frequency band
and different frequencies experiences different absorption and
scattering, it is inefficient to allocate the same amount of
power to all the nano-emitters. In addition, according to the
capacity analysis, if we allocate the same amount of power to
each sub-band, the detected information volume are different,
which leads to different accuracies. In other words, some of
the sub-bands are highly distorted (i.e., the results are not
trustable), but other sub-bands have well detected results. As a
result, the whole reconstructed spectrum is not homogeneous
in accuracy. When the emission power is large enough, there is
no need to consider this problem since all the sub-bands have
good enough accuracy. However, for the proposed cooperative
Raman spectroscopy, the smart ring has very limited power
and thus the emission power need to be as small as possible.
In the following we derive an optimal power allocation scheme
based on the developed capacity to efficiently utilize the power.
Due to the unique sensing system, we do not have real-time
channel state information and thus the power allocation is
based on prior knowledge of the channel which is derived
in [20] and measured in [16]. Let the total sensing power in
the ring be Pt. Since the nanosensors have the same sub-band
emitters and detectors, the power can be first equally allocated
to each nanosensor and then optimally allocated to each nano-
emitter. Therefore, the transmission power of each nanosensor
is Ps = Pt/Ns and we can optimize the power allocation in
one nanosensor instead of all the nanosensors. We implicitly
assume all the nanosensors have the same configuration and
the subscript i is neglected.

To guarantee that all the sub-bands have the same capability
to extract information from the biofunctional particle, their
capacity should be the same. Thus, the condition need to be
satisfied is

C1 = C2 = · · · = CN f , (19)

s.t.
N f∑
j=1

Pt
j = Ps, (20)

where Pt
j is the jth sub-band emitter transmission power. By

observing (18), we can find that the transmission power is
integrated with the channel condition. If all the h j,kPt

j can be

the same, then (19) can be satisfied. As a result, the optimal
power for the jth sub-band can be given as

Pt
j =

Ps

N f
∑N j

p

k=1 h j,k

. (21)

Since the N j
p and h j,k are dynamic random variables, which

are determined by the NBPs. As discussed before, the power
allocation is based on prior knowledge of the channel. There-
fore, by using the system model provided in Section II, we
derive the expected value of

∑N j
p

k=1 h j,k, which can eliminate
the randomness in power allocation.

When the transmission power of an emitter is Pt
j, the

detected power without noise can be written as

Pd
j =

N j
p∑

k=1

h j,kη ft , f j P
t
j. (22)

In view of (22), if we can find Pd
j given η ft , f j and Pt

j,
∑N j

p

k=1 h j,k

can be found. It is worth noting that, since the bandwidth
Bsub = fi+1− fi is small enough, the channel can be considered
as flat fading within a sub-band. Also, our analysis is general,
which holds for all the sub-bands. We first derive the expected
detected power for one nano-detector. As shown in Fig. 5,
we divide the cross section of the cone into sub-regions with
height ∆h. Then, we classify the NBPs into each sub-region
based on their position. Here, the height ∆h is considered as
the largest height of the blood vessel’s cross section which is

∆h = 2
√

S u
π

. The expected detected power can be expressed
as

E{Pd
j } = E{

N j
p∑

k=1

Pd
j,k} (23)

≈ E{
Rs∑

n=1

N̂ j
pn∑

k=1

Pd
j,n,k} ≈

Rs∑
n=1

E{N̂ j
pn }E{P̂

d
j,n}, (24)

where Pd
j,k is the detected power scattered by the kth NBP, N̂pn

is the NBP number within the nth sub-region, and P̂d
j,n is the

expected detected power scattered by the nth sub-region. Due
to the division of the cross section of the beam cone, (23) can
be approximated by (24). Next, we look at each sub-region
and find the expected detected power.

In each sub-region, we consider all the NBPs have the same
distance to the nano-detector since the beam angle is very
small. The expected NBP number in a sub-region can be found
by using

E{N̂ j
pn } =

∞∑
n=1

[
n · Pr(N̂ j

pn = n)
]
. (25)

Due to the complicated blood vessel distribution and their
different cross section areas, here we consider an equivalent
scenario, i.e., the randomly distributed blood vessels in the
same sub-region of the cone are considered as one equivalent
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blood vessel. The average length of a blood vessel in a sub-
region can be expressed as

l̂ =

∫ d tan α
2

0

2
√

(d tan α
2 )2 − x2

d tan α
2

dx =
πd tan α

2

2
. (26)

The cross section of the equivalent blood vessel can be
approximated by S u+S l

2 since the cross section is uniformly
distributed. The expected number of blood vessels in a sub-
region can be expressed as

λeq =
λbd∆h tan α

2

2r2
f

. (27)

Then, the length of the equivalent blood vessel is leq = l̂ · λeq

and the probability that there are n NBPs in the equivalent
blood vessel can be written as

Pr(N̂ j
pn = n) =

(λ0seqleq/u)n

n!
e−λ0 seqleq/u. (28)

Next, the expected detected power from one particle at dis-
tance d is given as

E{P̂d
j,n} = E{Pt

jGt( ft)h j,nη( ft, f j)Gr( f j)}, (29)

where Gt( ft) is the gain of the nano-emitter at frequency ft and
Gr( f j) is the gain of the nano-detector. Since on the left-hand
side of (29) only h j,n is a random variable (it is a function of
distance and subject to Rayleigh fading), (29) can be simplified
as

E{P̂d
j,n} =

π

2
Pt

jGt( ft)η ft , f jGr( f j)h j,nσ
2. (30)

By substituting (28) and (30) into (24), we can obtain the
expected detected power by a nano-detector. Finally, the
expected value of

∑N j
p

k=1 h j,k can be found by dividing the E{Pd
j }

by η ft , f j P
t
j.

Different from conventional wireless communication using
water-filling algorithm to optimally allocate power [27], the
power allocation in (21) is inversely proportional to the chan-
nel condition. Often in wireless communications more power
is given to the sub-bands with less attenuation to increase the
system output. In this sensing system if more power is given
to the sub-bands with less attenuation we can obtain accurate
estimation results. However, those high attenuation sub-bands
with less allocated power may generate unexpected peaks
which makes it hard to identify the molecules. For instance, we
express the idea by using a simplified notation P̃th̃η̃ + ñ = P̃r

where P̃t, h̃, η̃, ñ, and P̃r are transmission power, channel
coefficient, scattering coefficient, system noise, and received
power, respectively. First, if we use water-filling algorithm,
when h̃ is large, P̃t is also large and thus ñ is relatively
small when compared with P̃t. Hence, η̃ can be accurately
estimated by using maximum likelihood P̃r/(P̃th̃). When h̃ is
small, P̃t is also small according to water-filling algorithm. The
estimation becomes not accurate, especially when the noise is
strong (i.e., received power is large) the estimated η̃ deviates
a lot from the original value which generates a peak/null
in the spectrum. Since identifying Raman spectrum mainly
based on the resonant peaks, these unexpected peaks can cause
misleading detection results. Consequently, the conventional

water-filling algorithm does not work here and we need to
allocate power following (21).

The above power allocation does not include the scattering
coefficient and we only use the channel condition due to
the following reasons. Since the variation of the scattering
coefficient is much larger than the distortion of the channel, the
power allocation strategy is mainly affected by the scattering
coefficients. In other words, the variation of η ft , f j is larger
than h( f , d) and thus the emitter transmission power is almost
inversely proportional to the scattering coefficient. When the
noise is small or transmission power is high enough, the esti-
mation accuracy can be reasonable. However, when the system
becomes highly distorted, the detected signal can be consid-
ered as noise. When we calculate the scattering coefficient,
the transmission power need to be divided. Then we have two
scenarios. First, when the detected signal variation is smaller
than the scattering coefficient, this yields the original spectrum
which is mainly the scattering coefficient. Thus, if we want to
detect a molecule and allocate power based on its scattering
coefficient, no matter what kind of molecules are inside human
body, the detected results is always positive. Second, when
the detected signal variation is large, since the noise is strong
the scattering coefficient cannot be recovered. Generally, the
sensing system fails at high noise. Since sometimes we can
obtain positive detection results when noise is strong, in power
allocation we do not consider the scattering coefficient and
only the channel dispersion is taken into account. In addition,
the optimal power allocation strategy is not affected by the
quantization threshold; it is only determined by the optical
channel condition.

IV. Spectrum Reconstruction
In this section, we provide both the centralized and dis-

tributed sensing algorithms to reconstruct the Raman spectrum
based on the observations of nanosensors. Within the sensing
period, the photon number received by nano-detectors is
Nd ∈ RNs×N f and its element (i, j) means the received photon
number by the ith sensor’s jth nano-detector. Based on it, we
estimate the NBP scattering coefficient η to find the Raman
intensity.

A. Spectrum Estimation with Shot Noise

The detected photon is a random number according to (3).
Based on the photon number, we need to estimate the received
signal y in (2). As suggested by (3), the relation between
the received signal and the photon number obeys Poisson
distribution. Then, maximum likelihood can be utilized to
estimate the received signal. We define

g =
e−y · yNd

i, j

Nd
i, j!

≈
e−y

√
2π

(ye)Nd
i, j (Nd

i, j)
−Nd

i, j−
1
2 . (31)

Note that we consider the time interval ∆t is a constant and
γp is simply approximated by y. Then, we can obtain the
derivative with respect to Nd

i, j,

(ln g)′ = ln(ye) +
1

2Nd
i, j

− ln Nd
i, j − 1. (32)
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The estimated received signal ŷ which can maximize (32) is

ŷ = e
ln Nd

i, j−
1

2Nd
i, j ≈ Nd

i, j. (33)

The estimation mean square error can be written as

ea =

∞∑
y=0

e−y · yNd
i, j

Nd
i, j!

· (y − Nd
i, j)

2

 . (34)

Once we have the estimation of ŷ, we need to estimate the
coefficient η ft , f j based on the knowledge of the system model.
The shot noise υ is a a nonnegative constant [22] which can be
subtracted from ŷ and the channel information can be found
by using the derived expected detected power, upon which we
can estimate η ft , f j .

B. Scattering Coefficient Estimation

1) Centralized Sensing: Up to this point, we have the
knowledge of the received signal, shot noise, and expected
value of the received power. Then, an estimation of η ft , f j can
be written as

η̂ ft , f j =

∑Ns
i=1(ŷi, j − υ)+

E{
∑N j

p

k=1 h j,k} · N̂s

= η ft , f j + ∆n, (35)

where ∆n is the estimation error, ŷi, j is the estimated signal
of the ith nanosensor’s jth sub-band nano-detector, (x)+ =

max(0, x), N̂s is the number that ŷi, j − υ ≥ 0, and E{
∑N j

p

k=1 h j,k}

can be found via (23) to (30).
In the centralized architecture, each nano-detector sends the

received photon number to the data fusion center directly.
Based on Nd and each detector’s operating frequency, the
received signal ŷi, j can be first estimated using (33). Then,
the signal denoted by photon number is converted to power.
The data fusion center can directly use (35) to estimate the
scattering coefficient. The centralized sensing algorithm is
summarized in Algorithm 1. As we can see, the centralized
sensing is very simple and it relies on the full information
of all the sensed data which results in high communication
overhead and high power consumption.

Algorithm 1 Centralized Sensing

Input: Nd, E{
∑N j

p

k=1 h j,k}, Ns, υ
Output: η̂

1: Based on Nd estimate received signal ŷi, j

2: Using (35) to find global estimated η̂

2) Distributed Sensing: Different from the centralized esti-
mation, in distributed estimation each nanosensor’s detector
first estimate and quantize the scattering coefficient. Only
one bit is sent to the data fusion center for final spectrum
reconstruction. In this way, the data communication overhead
among nanosensors and data fusion center can be significantly
reduced. Although we do not have the knowledge of the PDF
(probability density function) of ∆n, we can still estimate η ft , f j

by using the method in [28]. However, different from [28], the
scattering coefficient is in [0,∞), i.e., it cannot be negative.
Therefore, the algorithm need to be updated to apply it in

Raman spectrum reconstruction. It should be noted that we
assume the sensors have prior knowledge of the coefficient
η ft , f j , i.e., the sensing system tries to detect whether a molecule
is in intra-body environment or not.

From the perspective of a nano-detector, it has the informa-
tion of the detector’s shot noise υ, detected photon number
Nd

i, j, the expected channel condition E{
∑N j

p

k=1 h j,k}, and the
corresponding targeting NBP’s η ft , f j , where f j is its detecting
center frequency. First, by using the detected photon number
and (33), the nano-detector can find the received signal and
convert it into power notation ŷi, j. Then, it can estimate η ft , f j

locally by using

η̂local
ft , f j

=
ŷi, j − υ

E{
∑N j

p

k=1 h j,k}

(36)

Now, instead of sending η̂local
ft , f j

to the data fusion center, the
nano-detector first quantize it and the quantization threshold
is determined by the nanosensor.

The Ns nanosensors are divided into K groups and the group
Gk uses τk as quantization threshold. Each τk is considered as a
threshold for binary quantization. Consider that the nanosensor
collects the local estimation results and set the maximum
quantization threshold as

Ti = max(η ft , f j ) +

N f∑
j=1

η̂local
ft , f j

/N f . (37)

Ideally, max(η ft , f j ) is the maximum value of the coefficient.
However, due to the noise, dynamic NBP number, and channel
distortion, the estimated value may be larger or smaller than
the original scattering coefficient and different nanosensors
may have drastically different estimated values, although the
reconstructed spectrum may have similar shape. Then, the
mean estimated scattering coefficient is added to adjust the
level of the threshold. As a result, Pr(η̂ ft , f j > T ) ≈ 0. The in-
terval [0,T ] is divided into K sub-intervals [τi,0, τi,1, · · · , τi,K],
where τi,K = Ti. Then, the nano-detector can quantize η̂local

ft , f j

using the thresholds.
The estimation of η̂ ft , fi can be updated as

η̂ ft , f j =
1
4

K∑
k=1

 1
NGk

NGk∑
s=1

[
bs, j(τi,k+1 − τi,k−1)

] , (38)

where NGk is the number of nanosensors in group k, whose
estimated received signal ŷ is not zero. The distributed sensing
algorithm is summarized in Algorithm 2. In Algorithm 2, the
steps from 1 to 11 are performed by the nano-detector and the
step 12 is conducted in the data fusion center.

3) Estimation Error Evaluation: By using the preceding
estimated scattering coefficients of the NBP we can find the
Raman intensity in the jth sub-band by using IR =

Pt
expη ft , f jλ j

hPCcLT
,

where Pt
exp is the transmission power used by the experiment

in [29], and λ j is the wavelength of the jth sub-band.
Note that, identifying the molecule is mainly based on the

resonant peaks in the Raman spectrum and thus the level of
the intensity is not crucial (i.e., it can also be adjusted by using
different transmission power). Motivated by this observation,
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Algorithm 2 Distributed Sensing
Input: η,Nd, hd

i , Ns nanosensors divided into K groups and
each group is Gk, k = 1, · · · ,K

Output: η̂
1: Based on Nd estimate received signal yi, j

2: Using (36) to find local estimated η̂local
ft , f j

3: Ti = max(η ft , f j +
∑N f

j=1 η̂
local
ft , f j

/N f )
4: τi,k =

(k−1)Ti
K , k = 1, · · · ,K

5: for nanosensors in Gk do
6: if η̂local

ft , f j
< τi,k then

7: bi, j = 0
8: else
9: bi, j = 1

10: end if
11: end for
12: η̂ ft , f j = 1

4
∑K

k=1

{
1

NGk

∑NGk
s=1

[
bs, j(τi,k+1 − τi,k−1)

]}

we first normalize the spectrum by dividing its mean value,
then calculate the Mean Square Error (MSE), i.e.,

es =
1

N f

N f∑
j=1

 IR, j

ĪR
−

ÎR, j

¯̂IR

2

, (39)

where IR, j is the original Raman intensity in the jth sub-band,
ĪR is the mean value of the original Raman intensity across
all the sub-bands, ÎR, j is the estimated Raman intensity in the
jth sub-band, ¯̂IR is the mean value of the estimated Raman
intensity across all the sub-bands. The outage probability is
defined as Pr(es > τt), where τt is a threshold. When es is
smaller than τt, we consider the estimated results can maintain
a certain accuracy. In the numerical analysis of the system
performance and optimal configuration, we use the outage
probability as a guideline.

V. Numerical Analysis and Optimal System Configuration

In this section, we try to find the optimal configuration
of the system based on the system model and developed
estimation algorithm. The optimal configuration design is
constrained by the total amount of transmission power Pt

and the maximum number of nano-emitter and nano-detector.
The optimal configuration of the system should meet three
objectives, namely, 1) minimum number of nanosensors to
ensure that we can successfully reconstruct the spectrum;
2) minimum NBP density to guarantee the accuracy and
reliability of the estimation results; 3) minimum transmission
power to reduce the overall power consumption of the system.

Before embarking on the analyses of different system con-
figurations, we give an ideal estimated spectrum which has
the optimized numbers of nanosensors, NBP density, and
transmission power. Also, the considered molecule noise and
shot noise power are relatively small. In this way, we show the
characteristics of good estimations and then in the following
discussions we investigate the effect of each parameter and
find out their optimal values.

400 600 800 1000 1200 1400 1600 1800 2000 2200

10
2

10
3

10
4

Raman Shift (cm−1)

R
am

an
 In

te
ns

ity
 (

a.
u.

)

 

 

centralized
distributed
origianl signal

1013

1200

1342

1636

1608

Fig. 7. Estimated Raman intensity. The original signal is measured Raman
intensity of 1,2-bits(4-pyridyl)-ethylene molecules in [29]. The intensity is
displayed in log scale.

A. Ideal Estimation

The molecule utilized in this numerical simulation is 1,2-
bits(4-pyridyl)-ethylene and its scattering coefficient and Ra-
man spectrum are measured in [29]. In the numerical analysis,
we first randomly generate a set of blood vessels but we do not
change their position and number in the following numerical
analysis since the blood vessels are fixed in reality. Other
random parameters such as NBP density and position, channel
fading, and noise are randomly generated in each numerical
simulation. The numerical parameters are provided in Table II.

As shown in [29], the Raman peaks of 1,2-bits(4-pyridyl)-
ethylene molecules are at 1013, 1200, 1342, 1608, and
1636 cm−1. As depicted in Fig. 7, by using the centralized
sensing architecture the Raman peaks are at 1016, 1205,
1350, 1616, and 1641 cm−1 and the MSE is 0.4. By using
the distributed sensing architecture the Raman peaks are at
1016, 1205, 1350, 1603, and 1641 cm−1 and the MSE is 1.1.
The estimated spectrum matches very well with the original
spectrum. Moreover, the maximum different of the resonant
peaks’ Raman shift between the estimated and original signal
is 8 cm−1. However, if we reduce the transmission power or
the NBP density, the accuracy of the estimation results cannot
be maintained. For example, in Fig. 8 the NBP density is
reduced to 1 × 1010 /s/m2. The MSE of the centralized and
distributed sensing results are 1.75 and 2.0, respectively. As
we can see in the figure, within the left-hand side oval, the
estimated signals have two peaks, while the original signal
only has one. Within the right-hand side oval, the original
signal has two peaks, while the estimated signals have only
one. Due to the low density of NBP, the estimation accuracy
is reduced.

In the following, we investigate the effects of nanosensor
number, biofunctional particle density, noise, and transmission
power. The outage probability threshold τt is set as 1.5 and
3. If the MSE es is smaller than 1.5, we can reconstruct the
Raman spectrum accurately. When 1.5 ≤ es ≤ 3, there are
some unexpected or missed peaks in the spectrum but the
shape of the reconstructed Raman spectrum is still very similar
as the original one. When es > 3, the reconstructed Raman
spectrum is highly distorted and becomes very different from
the original one, which means the results are not acceptable.
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TABLE II
Numerical Parameters

Parameter Value Parameter Value

λb 106 /m2 u 0.45 m/s

S u 0.003 cm2 S l 3× 10−5 cm2

r f 5 mm rb 2.5 mm

α π
36 Gs 30 dBi

Gr 30 dBi Bw 1 THz

σm 1 σr 1

λ0 2.6 × 1010/(s · m2 ) hc 2.5 mm

Pt 10 dBm Ns 30

N f 148 υ 1

Raman Shift (cm-1)
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Fig. 8. Estimated Raman intensity with low NBP density. Within the left-hand
side oval, the estimated signals have two peaks, while the original signal only
has one. Within the right-hand side oval, the original signal has two peaks,
while the estimated signals have only one.

B. Nanosensor Number

In (8) we derived the minimum nanosensor number based
on the blood vessel density. The nanosensor number should
satisfy (8) to guarantee that there are blood vessels going
across the beam cone for all the sub-bands. In Fig. 9, the
nanosensor number is varied and the outage probability of
the estimation error is evaluated. The threshold τb in (8) is
set as the same as the outage probability. As we can see in
the figure, the theoretical minimum number of nanosensors
derived in (8) is lower than other estimation outage probability.
Hence, it requires fewer nanosensors to satisfy the condition
in (8), but more nanosensors are needed to achieve a certain
accuracy. Moreover, it is obvious that the centralized sensing
architecture requires fewer nanosensors than the distributed
sensing architecture. When the nanosensor number is larger
than 30, both the centralized and distributed sensing architec-
ture can achieve very high estimation accuracy. Observe that
there are some fluctuations on the curves; this is mainly due
to the distribution of the nanosensors and some blood vessels
in the nano-detectors’ beam are far from the detectors which
makes the detected power small. As the number of nanosensor
increases, this effect decreases.

C. Nano-biofunctional Particle Density

The minimum biofunctional particle density is always de-
sired to reduce the side-effects. In Fig. 10 the density is
varied from 108/s/m2 to 1011/s/m2. Similarly, the centralized
sensing architecture still outperforms the distributed sensing
architecture, i.e., it requires smaller NBP density. In addition,
to achieve near zero outage probability with high estimation
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Fig. 10. Effect of biofunctional particle density on the outage probability.

accuracy (τt = 1.5) the required density is 2.6 × 1010/s/m2 for
centralized sensing architecture and distributed sensing archi-
tecture which was adopted in the ideal estimation. In addition,
we notice that the outage probability of the centralized sensing
results decreases gradually with the NBP density increases,
while the outage probability of the distributed sensing results
drops much faster. They almost require the same NBP den-
sity to obtain accurate estimation results. The reason is that
when some nanosensors receives highly distorted data, the
centralized algorithm can mitigate this effect by averaging the
data. However, the distributed sensing architecture first lost a
certain accuracy during quantization. Moreover, the weight of
the highly distorted data is large in the distributed estimation
algorithm since the nanosensors are divided into sub-groups
and each nanosensor plays an important role in its sub-group.
This effect can be reduced by using more nanosensors.

D. Effect of Noise and Transmission Power

The detected signal-to-noise ratio are mainly determined
by the noise level and the transmission power. As discussed
in preceding sections, the molecule noise and the shot noise
(mainly dark current) affect the estimation in different ways. In
Fig. 11 the influence of molecule noise is evaluated. As we can
see, when σm is smaller than 4 both the centralized sensing
architecture and distributed sensing architecture can achieve
very accurate estimation. However, as the noise increases,
the distributed sensing architecture becomes inaccurate. Also,
when σm is larger than 25, the centralized sensing architecture
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with outage threshold 1.5 also increases slowly. Generally, the
molecule noise does not have strong influence on the spectrum
reconstruction as long as it is not very strong. The reason is
that the molecule noise is added together with the scattering
coefficient, i.e., η ft , f j +κ

m, and the primary feature of the Raman
spectrum is resonant peaks. Since η ft , f j is large at the resonant
Raman shift, the noise has negligible effects. As a result, the
resonant peaks are not prone to be corrupted by molecule
noise.

The effect of shot noise is shown in Fig. 12. Different from
the molecule noise, shot noise can influence the estimation
accuracy dramatically. Here we mainly consider the dark
current noise. If the signal power is comparable with the dark
current noise, the detected photon number may shift drastically
from the accurate value accordingly to (3). Moreover, as
analysed in Section III-B, the dark current noise can create
unexpected peaks in the Raman spectrum, which makes the
spectrum unrecognisable On the other hand, we can increase
the estimation accuracy by increasing the transmission power.
As shown in Fig. 12, when the dark current noise is larger
than 2.5, the estimation results becomes inaccurate. When
it is larger than 25, both centralized and distributed sensing
architecture become unacceptable

Next, we evaluate the effect of transmission power. As
depicted in Fig. 13, when the transmission power is low the
signal is corrupted by the noises in the system and the outage
probability is high. For both centralized and distributed sensing
architecture, 10 dBm is the minimum amount of required
transmission power to achieve high estimation accuracy. We
also noted that when the transmission power further increases
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Fig. 13. Effect of transmission power.

above 20 dBm, the outage probability of distributed sensing
increase slightly. This is because the high received power
increases the variance in (3) which reduces the estimation
accuracy. Moreover, although the centralized sensing archi-
tecture requires less transmission power, this does not imply
that it is more power efficient. Because data communication
and quantization also consume power which are not counted
here.

VI. Conclusion
Biosensing using nanotechnology can provide unprece-

dented accuracy for bio-detection of DNA and proteins, and
disease diagnosis and treatment. Although conventional Ra-
man spectroscopy can provide information at nanoscale in
intra-body environment, the equipment is bulky and expensive.
In this paper, we propose a cooperative Raman spectroscopy
using a large number of nanosensors on a smart ring. In
this way, the sensing device can be portable and affordable.
The nanosensors can jointly and distributively emit and detect
optical signals. Meanwhile, the nano-biofunctional particles
(NBP) with health information can absorb optical power
and then send the information to nano-detectors via Raman
scattering. We propose the centralized and distributed sensing
architectures to estimate the Raman spectrum. The mathe-
matical models of each component in the sensing system are
introduced and the information capacity of the sensing system
is derived to optimally allocate power among nano-emitters.
The effect of the NBP density and molecule noise are analysed
and the accuracy of the sensing system are evaluated. The
results show that the cooperative Raman spectroscopy is able
to provide accurate estimation of the Raman spectrum which
can be utilized for molecule and chemicals identification.
Because of its small profile and low power consumption,
we believe the cooperative Raman spectroscopy can find its
significant applications in future smart health.

In our future work, the proposed system will be imple-
mented to detect biological molecules in vivo. The analyses
in this paper not only prove the feasibility but also provide
guidelines for future system optimization and implementation.
Before moving forward to implement the system, the electro-
magnetic compatibility issues, such as safety and radiation
regulations, will be considered and the bio-friendly nano-
devices will be designed. Based on them, the proposed system
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and the sensing algorithm can be utilized to optimally detect
biological molecules in vivo.
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